

A Dataset of Head and Eye Movements for 360° Videos

Erwan David¹, Jesús Gutiérrez¹, Antoine Coutrot¹, Matthieu Perreira Da Silva¹, Patrick Le Callet¹ ¹LS2N UMR CNRS 6004, Université de Nantes, France erwan.david@univ-nantes.fr

Introduction

- We created a new dataset of head and eye movements in Virtual Reality. Participants explored videos (nonstereoscopic) wearing a HTC-Vive with embedded eyetracking. We released saliency videos and scanpaths computed from raw data, along with a toolbox to compute similarity measures.
- Our dataset will help the community in the development of new theoretical and applied research such as foveated rendering, visual attention modeling, data compression, viewport adaptive streaming, etc.

Omnidirectional content (360°)

Sphere space Virtual sphere on which content is projected Viewport Images displayed in the headset

Data gathering

Material and method

- 57 observers (25 women; mean age: 25.7 years)
- 19 videos (duration: 20 sec.)
- HTC-Vive (90fps) + SMI Eyetracker (250Hz)
- Task: free-viewing, sitting on a rolling-chair
- experimental condition: start exploration either at longitude 0° or 180°

Statistics

- 5 video categories (Indoor, Outdoor, Urban, Rural, People)
- video framerate: 24 to 30 fps
- 380 sec. of saliency videos
- > 55,000 fixations

Dataset structure

Gaze processing

- Viewport gaze position (2D) to Unit vector (gaze samples on unit sphere, 3D)
- Unit gaze samples to fixations and saccades (velocity algorithm, threshold: $80^{\circ}/\text{sec.}$)

Head movement processing

- Head movements can be categorized as "fixations" (periods of stability, below $\sim 25^{\circ}/\text{sec}$)
- With no gaze information we cannot make any assumptions about an observer's perception during head movements
- Solution: extract "head trajectories" sampled over 200ms windows (100 points per 20sec. stimulus)

Stimuli – frame examples

Saliency maps – frames (videos are shown on tablets nearby)

 A saliency map per frame → saliency videos (as many frames as the original stimuli)

Saliency frames → unnormalized (free to normalize over individual frames or after pooling frames)

\mathbf{Scene}

Head+Eye

Head-only

Scanpaths

Scanpaths are sequences of fixations, they retain temporal and individual information.

Fixation features:

- Fixation index
- Longitude
- LongitudeLatitude
- Start timestamp
- Fixation duration
- Start frame

Similarity measures: compare together...

• saliency videos \rightarrow AUC, CC, KLD, NSS, SIM

 $\bullet \ scanpaths \rightarrow MultiMatch$

Particularities: dynamic

- Scanpaths alignement \rightarrow temporal de facto
- Pool saliency frames together by 200ms windows **Particularities: omnidirectional**
- Correcting saliency frames for equirectangular map distortion: weighting maps with a sine function according to the latitude $(\sin y \text{ for } y \in [0, \pi])$

Link

This dataset is part of the **UN Salient360! Benchmark**. A new benchmark for 360° attention modeling (image and video).

Come play with our dataset: salient360.ls2n.fr/datasets/

Acknowledgements

The work of Erwan David has been supported by RFI Atlanstic2020. The work of Jesús Gutiérrez has been supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement N. PCOFUND-GA-2013-609102, through the PRESTIGE Programme coordinated by Campus France.