
Computers & Graphics (2023)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

The Salient360! toolbox: handling gaze data in 3D made easy

Erwan Davida,∗, Jesús Gutiérrezb, Melissa Lè-Hoa Võa, Antoine Coutrotc, Matthieu Perreira Da Silvad, Patrick Le Calletd

aScene Grammar Lab, Department of Psychology, Goethe University, Frankfurt-am-Main, 60323, Germany
bGrupo de Tratamiento de Imágenes, Universidad Politécnica de Madrid, Madrid, 28040, Spain
cLIRIS, CNRS, University of Lyon, Lyon, 69622, France
dNantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes, 44000, France

A R T I C L E I N F O

Article history:
Received September 9, 2023

Keywords: toolbox, gaze tracking, head
tracking, 360 stimuli, processing, com-
parison, visualisation

A B S T R A C T

Eye tracking has historically been a very popular tool. The data it records allow us to
understand how people behave and to what they attend within our visual world; under
this perspective, experiments, applications and use-cases are endless. It is therefore not
surprising to witness a strong rise in the use of extended reality devices with embedded
eye trackers in research. These devices allow for less obtrusive experimenting condi-
tions, and a significantly much higher experimental control, when compared to tradi-
tional desktop testing. The use of eye tracking in eXtended Reality (XR) is increasing
and so is the need for a toolbox enabling consensus about eye tracking methods in 3D.
We present the Salient360! toolbox: it implements functions to identify saccades and
fixations and output gaze features (e.g., saccade directions) to generate saliency maps,
fixation maps, and scanpath data. It implements comparisons of gaze data with methods
adapted to 3D. We plan continuous improvements of the toolbox as the community de-
velops new tools and methods dedicated to 360 gaze tracking. We hope that this toolbox
will spark discussions about the methodology of 3D gaze processing, facilitate running
experiments, and improve studying gaze in 3D.

https: // github. com/ David-Ef/ salient360Toolbox

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Gaze data is a very rich and complex signal [1, 2], it informs
about where and how someone looked. Today, eye tracking is
frequently utilised in many domains: scientific and engineering
alike. Tracking eyes outside the lab with head-restraints used to
be the norm, but modern devices allow unobtrusive recording
of gaze in more naturalistic conditions: in the field or in the
lab with extended reality devices. The recent popularity for the
use of XR devices as an experimental tool is easily explained

∗Corresponding author: Tel.: +49 (0)69 798 35409;
e-mail: david@psych.uni-frankfurt.de (Corresponding Author

Name)

by the fact that they allow for near-perfect control of a virtual
environment, coupled with unobtrusive measurement systems
allowing participants to move and interact freely, all the while
allowing for sufficiently high-quality tracking measures.

The quality of extended reality (XR) headsets has increased
tremendously in the last decades. With the addition of em-
bedded eye trackers, scientists have begun to rely on it more
and more to study gaze and visual attention in immersive con-
ditions closer to the natural world [3]. As these devices en-
ter homes, more immersive and 360 contents (image, movies,
video games) specific to this viewing paradigm are now being
created. As a result, an understanding of how people look and
behave in these environments [4, 5] is required to improve, for
example, gaze prediction algorithms, which is essential to de-

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://github.com/David-Ef/salient360Toolbox

2 Preprint Submitted for review / Computers & Graphics (2023)

Fig. 1: Schematic representation of the functionalities of the toolbox, from input to be processed to generated outputs. Inputs appear in green dashed boxes, outputs
show similarly in blue. Processing steps are embedded in boxes with solid black lines. Elements in grey are optional.

veloping compression algorithms adapted to XR. Consequently,
there is a need to have robust and powerful tools to process gaze,
eye, and head tracking in 3D.

There exist several eye tracking toolboxes meant to handle
data obtained on standard computer screens. For example, eye
tracker vendors often provide tools themselves, for example to
identify saccades and fixations, and create saliency maps. Some
of these toolboxes are dedicated to particular eye trackers (e.g.,
[6]). There are non-specialised toolboxes meant to be used in
many circumstances [7, 8], while others are dedicated to partic-
ular analyses [9], applications [10] or experimental conditions
[11].

When transitioning from on-screen to XR studies, it becomes
clear that eye tracking toolboxes are not applicable. Moving
from a screen as a 2D plane to a 3D world, one must now con-
sider the movement of the head as part of the gaze. Therefore,
eye rotation data are often referenced by ”eye-in-head” and the
combined head and eye rotation by ”eye-in-space” [12, 13]. In
addition to this nomenclature, in this paper we choose to em-
ploy eye and gaze, respectively. On top of this, gaze-parsing al-
gorithms need to be modified (e.g., the Euclidean distance used
to compute velocities is replaced by the angle between vectors;
Eq 8). Many measures must be updated, which are used to pro-
cess raw data, generate features of saccades and fixations, or
saliency data. Saliency and scanpath comparison algorithms
[14, 15] need modifying as well. The toolbox described in this
article was created in response to this void in the community.
Its functionalities related to saccade and fixation features are
useful to experiments tracking head and eye, whereas those re-
lated to saliency maps are constrained to omnidirectional stim-
uli, like 360° pictures and videos. As more and more teams
come to use gaze tracking in XR we believe it is of utmost im-
portance to publish updated tools and start broader discussions
about new/adapted tools and methods.

2. What the Salient360! toolbox implements

Written originally for the Salient360! visual attention mod-
elling challenge [16, 17, 18] our toolbox now covers three main
applications: processing raw data, generating saliency and

saccadic features, comparing saliency and scanpath data, and
visualising raw and processed data. It supports processing raw
eye and head rotations to produce eye-in-space data, which are
processed further to identify fixation positions for saliency data
generation, and more scanpath features (fixation and saccade
features, Fig 2). Both type of generated data (saliency and scan-
path features) have methods implemented to be compared.

The toolbox is written in Python 3 (Python Software Foun-
dation, https://www.python.org/) with the help of the scien-
tific computing toolbox (SciPi [19], with NumPy [20]) and
statsmodels [21]. The OpenCV [22] and scikit-image [23] mod-
ules are used to manipulate saliency maps as images. Numba
[24] is used to accelerate some processing steps (e.g., saliency
map calculation), PyOpenGL and PyQt5 were needed to build
the visualising part of the toolbox. A list of requirements and
an installation scripts are provided in the repository’s README
file. Installation is made easier with the use of a Conda environ-
ment.

Although the main purpose of the toolbox is to handle gaze
data as the combination of eye and head data, it also supports
processing head data alone as well. In that particular case, the
toolbox behaves as if the eyes were always perfectly still and
centered in their respective orbit. Moreover, the toolbox also
possesses special implementation variants dedicated to data ob-
tained while visualising dynamic content (e.g., a 360 video).
Keep in mind that, although we describe most of the toolbox
as pertaining to gaze data obtained from viewing static stimuli,
everything applies to head and dynamic data as well.

It is important to note that our toolbox, and the methods and
algorithms implemented therein actually apply to any eye-in-
space data, whether it be gathered using an XR device or from
a mobile eye tracker used for testing in the field. The reason
why we do not focus on the latter is because head tracking in
these conditions is very arduous, and therefore often missing,
allowing for eye-in-head processing alone. Our toolbox is suit-
able to process

2.1. Processing

The minimal input is, for each sample: a timestamp, an eye
direction vector, and a head rotation value (Euler angles or

Preprint Submitted for review / Computers & Graphics (2023) 3

(a) Fixation map (b) Saliency map

(c) Saliency data blended with stimulus
(d) Fixation positions over a stimulus (colour encodes for fixation index)

Fig. 2: Example outputs from our toolbox. a) a fixation map as a 2D matrix with fixation counts pixel-wise. b) a saliency map obtained by convolving a fixation
map with a Gaussian kernel. c) a saliency map blended with an image to better identify salient regions. d) colour-coded points drawn at fixation locations to get a
scanpath image showing time-course development (data from only one trial is shown here); lines between points can be added to help visualise transitions.

quaternion). When loading a raw or processed gaze file, the
toolbox will try to identify the required variables amongst the
file columns according to its header string and a set of allowed
variable names (see Tab 1 for a full list). If the timestamp data
is not in milliseconds it will be automatically adjusted (Algo 1).
In cases where the eye data saved is not eye-in-head but eye-in-
space (i.e., eye and head rotation data are already combined) the
user still needs to provide head rotations for the toolbox to op-
erate. For that purpose new columns for the identity quaternion
should be added to the raw data file (x: 0, y: 0, z: 0, w: 1).

Algorithm 1 Method used to automatically adjust timestamp
data to milliseconds

1: ~t ← Timestamp sample vector
2: ∆~t ← Time difference between consecutive timestamps
3: logsamplerate ← log10(Mean(∆~t))
4: ad just ← 3 ∗ Floor(logsamplerate)
5: if ad just , 0 then
6: ~t ← ~t ∗ 10−ad just

7: end if

Raw data are processed to produce saccade and fixation fea-
tures according to a set of allowed parameters. First, according
to what eye data is available, one may choose which to use:
left, right or combined. If combined eye data is not provided
it will be computed as the average of left and right data. We
recommend to resample head and eye data to have matching
sampling rates, for example, using the Vive Pro Eye will result
in head data sampled at 90Hz and eye tracking data at 120Hz.
Head rotations are stored as quaternions, but if the head rotation

data are provided as Euler angles, they will be converted:

Q =


sin Ex

2 cos Ey

2 cos Ez
2 + cos Ex

2 sin Ey

2 sin Ez
2

cos Ex
2 sin Ey

2 cos Ez
2 − sin Ex

2 cos Ey

2 sin Ez
2

cos Ex
2 cos Ey

2 sin Ez
2 − sin Ex

2 sin Ey

2 cos Ez
2

cos Ex
2 cos Ey

2 cos Ez
2 + sin Ex

2 sin Ey

2 sin Ez
2

 . (1)

Where Ex, Ey and Ez are respectively pitch, yaw and roll. Q
is a quaternion with components ordered X, Y , Z, W. We use
the spherical quadrangle interpolation (SQUAD) method [25]
to interpolate between quaternions; cubic interpolation is used
for eye direction vectors.

It may be that eye data are provided as 2D positions on an
XR device’s left and right viewports; in that eventuality, eye
data should be projected from viewport space to world space
relative to the head. To do so, first, a projection matrix (Eq 2) is
constructed from the characteristics of a (virtual) camera (Fovy:
vertical field of view, Aspect: the display’s width to height pixel
aspect ratio, Near and Far: the near and far camera frustum
planes distance).

Pro j =


1

Aspect∗tan(Fovy/2) 0 0 0
0 1

tan(Fovy/2) 0 0
0 0 Far+Near

Far−Near 1
0 0 − 2ḞarṄear

Far−Near 0

 (2)

Second, a simple view matrix is made, from the properties
of a camera positioned at the origin (Pos = (0, 0, 0)), fac-
ing along the forward vector (Target = (0, 0, 1)), and using
the up vector (U p = (0, 1, 0)) (Eq 3). With F = (Target −

4 Preprint Submitted for review / Computers & Graphics (2023)

Table 1: A file will be identified as a raw data file as long as it provides timestamp, either eye rotation (left, right or combined) and either head rotation (either Euler
angle or quaternion) data. Non-alphabetic characters are removed before looking up names: camera.quaternion.w is parsed as cameraquaternionw. Custom column
names should be added in functions FindRawFeaturesByHeader of file helper.py.

Data Accepted column names
Timestamp oculots, oculotimestamp, ocutimestamp, etts, ettimestamp, timestamp, ts

Left gaze X leftgazex, leftgazedirx, lgazex, xlgaze, lefteyedirectionx, leftgazedirectionx
direction Y leftgazey, leftgazediry, lgazey, ylgaze, lefteyedirectiony, leftgazedirectiony

Z leftgazez, leftgazedirz, lgazez, zlgaze, lefteyedirectionz, leftgazedirectionz
Right gaze X rightgazex, rightgazedirx, rgazex, xrgaze, righteyedirectionx, rightgazedirectionx

direction Y rightgazey, rightgazediry, rgazey, yrgaze, righteyedirectiony, rightgazedirectiony
Z rightgazez, rightgazedirz, rgazez, zrgaze, righteyedirectionz, rightgazedirectionz

Combined gaze X bingazex, bingazedirx, meangazedirx, lgazex, xlgaze, meangazedirectionx, meangazedirectionx
direction Y bingazey, bingazediry, meangazediry, lgazey, ylgaze, meangazedirectiony, meangazedirectiony

Z bingazez, bingazedirz, meangazedirz, lgazez, zlgaze, meangazedirectionz, meangazedirectionz
Head quaternion X xcam, camx, headx, xhead, camerarotationx, cameraquaternionx

Y ycam, camy, heady, yhead, camerarotationy, cameraquaterniony
Z zcam, camz, headz, zhead, camerarotationz, cameraquaternionz
W wcam, camw, headw, whead, camerarotationw, cameraquaternionw

Head Euler Pitch pitch, campitch, pitchcam, pitchead, headpitch
rotation Yaw yaw, camyaw, yawcam, yawhead, headyaw

Roll roll, camroll, rollcam, rollhead, headroll
Sample validity Left vall, lval

Right valr, rval

Pos)/
∥∥∥Target − Pos

∥∥∥, S = (U p×F)/
∥∥∥U p × F

∥∥∥, and U = F×S .
Using the OpenGL Mathematics library, these two steps corre-
spond to calls to perspectiveLH_NO and lookAtLH respec-
tively.

View =


S x Ux Fx 0
S y Uy Fy 0
S z Uz Fz 0

−(S · Pos) −(U · Pos) −(F · Pos) 1

 (3)

To finish, the inverse of the projection matrix multiplied by the
view matrix is calculated (VP−1 = (Pro j × View)−1) to project
a 2D viewport position (normalised to [-1, 1]) to a 3D direction
vector relative to the head position and rotation (Eq 4). The
resulting vector should be normalised.

Posworld = VP−1


Posscreen

x
Posscreen

y
1
1

 (4)

To identify saccades and fixations [26] we provide three
methods:

• A velocity-based method – using a velocity threshold pa-
rameter (in °/s).
• A hidden Markov model method – model’s parameters are

trained on the velocity signals and hidden states come to
represent samples of low (fixations) and high (saccades)
velocities.
• A cluster-based method – DBSCAN [27] is fed sample po-

sitions and used to separate clusters of points (fixations)
from noise (saccades).

Filter parameters to smooth the velocity signal are provided as
well (Gaussian or Savitzky–Golay filters).

The following equations are used to convert between position
representations on a sphere; 3D unit vector to 2D equirectangu-
lar projection (longitude, latitude):

f ixequirect =

(
arctan(f ixx, f ixy)

arcsin(f ixz)

)
, (5)

2D equirectangular projection to 3D unit vector:

f ix =


sin f ixequirect

lat ∗ cos f ixequirect
long

sin f ixequirect
lat ∗ sin f ixequirect

long

cos f ixequirect
lat

 (6)

2D equirectangular projection to 2D Mercator projection

f ixmerc =

 f ixequirect
long

log(tan(π4 +
f ixequirect

lat
2))

 , (7)

were f ixequirect
long is a longitude (−π < f ixequirect

long < π) and

f ixequirect
lat a latitude (− π2 < f ixequirect

lat < π
2).

Because our data samples are gaze points located on a sphere,
the distance between two points is the angle between them,
when manipulating vectors the angle between ~u and ~v is cal-
culated thus:

Angle = arccos(~u · ~v), (8)

the orthodromic distance (great-circle distance) can also be
used, though we chose to reduce the number of data conver-
sions in our toolbox and work with vectors as much as possible.

Our toolbox allows head data to be processed by itself to pro-
duce a head trajectory. A sliding time-window is used (default

Preprint Submitted for review / Computers & Graphics (2023) 5

width = 90ms) to calculate the average position of the head a
successive time-intervals. It should be considered as if the gaze
were constantly centred in the visual field of view (forward vec-
tor of the head tracking data projected on a unit sphere). The
result is a succession of head centroid positions making up a
trajectory similarly to gaze positions do, as such the head tra-
jectory data can be processed to obtained the same features as
gaze (e.g., duration, amplitude; Fig 2).

The original use-case of the toolbox was to process data ob-
tained from experiments implemented in the Unity game en-
gine and SteamVR (now OpenXR). Therefore the coordinate
convention used is that of Unity, i.e., left-handed (second com-
ponent [Y] is the up axis and the third [Z] is the depth axis).
In order to make sure that new data follow the same convention
we recommend gathering eye and head tracking data in simple
trials where you can verify that looking left and up result in the
same directions in the toolbox.

2.2. Saliency generation

Equirectangular saliency maps can be generated on the basis
of any positional data (on a sphere) by drawing and accumulat-
ing 2D Gaussian kernels (Eq 9) at their position. Traditionally,
saliency maps are 2D matrices depicting gaze information on a
flat plane, such as a desktop computer screen. In our particu-
lar case, gaze data is understood to be a set of points on a unit
sphere, surrounding an observer’s head. To represent this in-
formation visually and to be saved on disk, this is transformed
using the equirectangular projection. Even though, the medium
is again a 2D matrix, its cells are really positions on a sphere,
therefore our saliency generation process must account for its
circular characteristic. We generate saliency data by accumu-
lating 2D Gaussian kernels at the location of data positions on
an equirectangular map:

Gauss(x) = exp(−
‖x − Pos‖2

2σ2). (9)

Where x is a 3D position back-projected from equirectangular
to unit sphere coordinates, σ the spread of the Gaussian ker-
nel, and Pos is another 3D position (e.g., a fixation position).
We rely on the Euclidean distance here to calculate distances
on the sphere instead of calculating the distance between unit
vectors (Eq 8). This choice was made to make the process com-
putationally lighter as this is a central operation, we judge it
acceptable because distances are most often short so the impact
is negligible.

The saliency generation process is optimised by defining a
Gaussian window, so that only the relevant parts of an equirect-
angular map (saliency matrix) are updated. The Gaussian win-
dow’s size is function of the Gaussian’s σ and of the latitudi-
nal distortion of the equirectangular projection, i.e., grows as
a function of the distance to the equator (Fig 3). It is defined
as centered on a point’s position and extends latitudinally by a
factor of sin(2.5σ) times the saliency matrix’s height, and lon-
gitudinally as (1 +

∣∣∣tan(Poslat − π/2)
∣∣∣)∗1.5σ times the matrix’s

width, where Poslat is a latitudinal position in radians ([0, π]).
The Gaussian kernels drawn are isotropic on the sphere, but

not on the equirectangular map due to the latitudinal distortion

Fig. 3: Illustration of the Gaussian windows calculated when generating
saliency data. Shown on the equirectangular projection (background image)
the height of the window is a constant function of the Gaussian’s σ, while the
width changes with the latitudinal position of the point. The Gaussian win-
dow appears approximately square once projected in a viewport (bottom-right
corner) or back-projected on the sphere (bottom-left corner).

Fig. 4: Mock-up data showing a longitudinal and latitudinal linear progres-
sion plotted with 2D Gaussian kernels in order to demonstrate how the dis-
tortions obtained from an equirectangular projection increase as a function of
the distance to the equator. The red lines delimit an artificial viewport’s posi-
tion, which projection appears in the bottom right. The equirectangular map as
background is back-projected on the sphere in the bottom-left corner. It can be
observed that the red bands covering both poles completely (top and bottom of
the equirectangular map) appear as isotropic Gaussian kernels on the sphere.

resulting from the cylindrical projection (Fig 4). The default
σ of the Gaussian kernel is set to 2 degrees, this value should
be evaluated taking into consideration the precision of the eye
tracking device used and the size of the para-fovea. Someone
accustomed to saliency maps created from traditional screen
presentation set-ups may note that an equirectangular saliency
map appears quite sparse unless many sample points are pro-
vided. One has to keep in mind, that while a desktop display
may represent approximately 30 to 40 degrees on both axes in
a viewer’s field of view, the equirectangular map represent con-
tent measuring 360 by 180 degrees.

The most common case for saliency data is in relation to fix-
ation positions, generated to obtain information about where
observers looked the most, this type of information can be
compared between experimental conditions (see section 2.4).
Saliency maps can also be obtained from raw data instead of
fixations. The resulting maps will implicitly encode informa-
tion about a fixation’s duration: a fixation lasting longer will
be made of more eye data samples than a shorter one, as such
a long fixation will result in the accumulation of many more

6 Preprint Submitted for review / Computers & Graphics (2023)

Gaussian kernels drawn at the sample position, and thus will
become more salient. Before producing saliency from raw data
one should consider that the increase in gaze samples to draw
will result in longer computation times.

Video saliency maps can be generated to support protocols
showing dynamic stimuli, like videos. In that case, a frame
index must be provided along with the raw data, saliency will
then be computed frame-wise. A function is provided to out-
put these saliency frames as images, an ffmpeg command [28]
is generated automatically to splice images together and pro-
duce a saliency video. Blended saliency images and videos are
produced if an image or a video is provided. The saliency data
is added over the original stimulus with an opacity of 70% by
default.

2.3. Scanpath generation

Scanpaths (i.e., fixation list) are saved as CSV-formatted files
containing any of all 10 calculated features (Tab 2). Absolute
and relative saccade angles are calculated on the Mercator pro-
jection because it is a conformal projection (conserves angles;
Eq 7); Eq 8 is used in that space to obtain angles between 2D
vectors. Eq 8 also appears when calculating any distance be-
tween points on the sphere, i.e., when calculating fixation dis-
persion and saccade amplitude. In addition to these features, we
provide an index of the fixation/saccade, as well as the start and
end timestamps of fixations in order to allow processing raw
data samples on the basis of the fixation/saccade data segmen-
tation. In the case of head trajectory data the exact same set of
features will be calculated, considering time-window points as
fixations, two such ”fixations” make the start and end point of a
”saccade”.

A second type of scanpath generation is proposed in the form
of images where the succession of fixation positions is repre-
sented as points on a 2D equirectangular map. A colour gradi-
ent is used to encode for fixation order, in addition, lines can
be drawn between fixation points to emphasise the order and
visualise saccades. The toolbox offers options to output this vi-
sual representation over a black background or over the original
stimulus viewed when the data was recorded.

2.4. Comparing

Saliency data comparison is achieved by comparing
equirectangular saliency outputs (Sect 2.2) with established
comparison metrics adapted to 360 stimuli. We made avail-
able the following metrics: AUC (Borji and Judd), CC, KLD,
NSS, and SIM (see [29] and [15] for a review). Implementa-
tions of AUC (Borji and Judd), CC, NSS and SIM are origi-
nally by Chencan Qian 1. We added a correction to CC, KLD,
and SIM in the form of a weight vector applied to the saliency
maps, in order to correct for the equirectangular distortions
(latitudinal bias): to give less importance to points near the
poles (using sine function). PyTorch [30] implementations of
CC, KLD, NSS and SIM measures are provided in the interest
of performance and compatibility, though the toolbox will use

1https://github.com/herrlich10/saliency, retrieved 2018.

non-PyTorch implementations by default which are accelerated
with Numba.

Scanpaths (time series of saccade/fixation features) are com-
pared using the MultiMatch method [31]. This method does not
rely on regions of interest, rather it tries to compare the shape
of the scanpaths. It considers and reports several measures of
scanpaths:

• Direction – Difference between saccade relative angles [5]
(where f ixmerc

n is a fixation position on a 2D Mercator
sphere projection ;Eq 7):

~saccn = f ixmerc
n − f ixmerc

n−1

∠ ~saccn = − arctan(~saccn−1 × ~saccn, ~saccn−1 · ~saccn)
∆Direction =Abs(∠ ~sacc1 − ∠ ~sacc2)

(10)

• Duration – Difference between fixation durations (where
f ixdur

n is the timestamp difference between the last and first
gaze samples making up a fixation):

∆Duration = Abs(f ixdur
1 − f ixdur

2) (11)

• Length – Difference between saccade lengths (where f ixn

is 3D unit vector for a fixation position on the unit sphere):

saccampl
n = arccos(f ixa

n · f ixb
n)

∆Length = Abs(
∥∥∥∥∥ ~saccampl

1

∥∥∥∥∥ −∥∥∥∥∥ ~saccampl
2

∥∥∥∥∥)
(12)

• Position – Angular distance between fixation positions on
sphere (where f ixn is 3D unit vector for a position on the
unit sphere):

∆Position = arccos(f ix1 · f ix2) (13)

• Shape – Difference between saccade ”shapes” (where
~saccmerc

n is a 2D vector in Mercator space):

∆S hape = ~saccmerc
1 − ~saccmerc

2 (14)

Note that the measures are normalised between 0 and 1, al-
lowing to be interpreted as a percentage of dissimilarity and to
be averaged together to produce a general single-value dissim-
ilarity score. Thus, all measures are divided by pi, apart from
the duration metric which is divided by the maximum duration
observed in the two scanpaths compared.

When comparing dynamic saliency maps or scanpaths, data
is compared over sequential windows of adjustable duration ().
For every time window we calculate measures, then we average
the results over the time windows.

Preprint Submitted for review / Computers & Graphics (2023) 7

Table 2: List of saccade and fixation features calculated by the toolbox, and available to be saved in CSV files.

Event Name Description

Fixation Duration Time difference between the last and first samples making up the fixation
Position Average gaze (or head position; centroid) as longitude and latitude, or as a unit vector
Dispersion Average distance of a fixation’s samples to its centroid
Peak velocity Maximum velocity observed during the fixation
Peak acceleration Maximum acceleration observed during the fixation

Saccade Amplitude Angular distance between first and last saccade sample on the sphere
Absolute angle Angle between the saccade vector and the longitudinal axis
Relative angle Angle between two consecutive saccade vectors
Peak velocity Maximum velocity observed during the saccade
Peak acceleration Maximum acceleration observed during the saccade

Fig. 5: Screenshot of the display options, outputs, and settings provided by the GUI.

2.5. Visualising

We created a graphical interface based on OpenGL and Qt5
to visualise gaze data. The following will launch it from the
command line:

python -m Salient360Toolbox.visualise

We recommend the following uses:

• Assessing data quality, by estimating noise levels in raw
data to determine if a better calibration procedures is re-
quired, for example;
• Confirming that the to-be-processed data is what is ex-

pected by the toolbox (e.g., up in the data is north for the
toolbox);
• Experimenting with gaze-parsing parameters by plotting

fixation points over a saliency maps calculated from raw
data sample positions: a fixation is made of many samples
at approximately the same position, thus its location will
appear salient and it is easy to identify salient areas that
are missing a fixation dot over them as a fixation missed
by the gaze-parsing algorithm2.

2Here are the steps to achieve this, 1) drop a raw data file over the GUI, 2) in
”display” toggle ”saliency map” and ”fixation map”, 3) in ”Settings” set ”Data”
to ”Raw gaze sample”, 4) in the same section click on the ”Update data” button.

The GUI boasts a fair number of options and presets, one
can overwrite the default settings by adding to the com-
mand line call (e.g., ”[...] --settings VP.mult=5”,
will make the viewport’s size five times the default),
the list of available settings is provided by calling
”[...] --show-settings”. One can load settings from a file
in this manner: ”[...] --load-settings settings.set”
(settings.set is provided as an example in the toolbox reposi-
tory). Still in the terminal call, one can provide any number of
paths to files or directories as free parameters. Paths leading
or containing images or videos will be loaded and set as the
equirectangular background image, while the toolbox will
attempt to parse, process and display all CSV data files.

The graphical interface allows to visually assess the quality
of the data, to experiment with parameters related to the pro-
cessing and generating functions (Fig 5). It implements export-
ing functionalities to output saliency maps (it does not support
dynamic stimuli), scanpath as coloured points on the original
stimulus or fixation lists with the features of your choice. The
GUI offers an equirectangular view window on which gaze data
appears as points (raw gaze sample or fixation position) over an
image, a greyscale saliency map or an image blending the stim-
ulus with the saliency data (Fig 6). This view also presents
a spheres on which the equirectangular data is back-projected
(lower-right), along with a viewport (lower-right) approximat-
ing what would be perceived in a XR headset. The viewport’s
boundary appears on the equirectangular map as a deformed

8 Preprint Submitted for review / Computers & Graphics (2023)

Table 3: A file will be identified as a fixation list file as long as either equirect-
angular or unit sphere positions are provided. Non-alphabetic characters are
removed before looking up column names to simplify the process: x.gaze is
parsed as xgaze. Custom column names should be added in functions Find-
FixlistFeaturesByHeader of file helper.py.

Data Accepted column names
Equirectangular Longitude long, longitude, longgaze

position Latitude lat, latitude, latgaze
Unit sphere X x, xsph, xgaze

position Y y, ysph, ygaze
Z z, zsph, zgaze

Timestamp time, starttimestamp
timestamp, timestart

Duration dur, duration
Index idx, index, i

square with a red border.
If a CSV file is dropped over the equirectangular view, the

toolbox will check if it contains raw gaze data or if it is a fixa-
tion list containing a series of fixation positions by checking the
file’s column names (Tab 1 for raw file and Tab 3 for fixation list
files). The content will then be processed to produce saliency
maps and (raw and fixation list) scanpath data. If the Control
key is pressed while dropping a text file, its data will be added
to what was currently on screen instead of replacing it. Addi-
tionally, if a directory is dropped onto the GUI, the toolbox will
attempt to use all files within (be them images, videos or text
files). Internally, a list of path to files is stored and each file is
reloaded to be processed anew if relevant settings are modified
(e.g., gaze-parsing parameters).

3. Usages

One can use the toolbox one of three ways:

• Scripting interface (Python)
• Command line interface (CLI)
• Graphical user interface (GUI)

The scripting interface allows the most control of the tool-
box, we recommend it for processing entire databases. We
wrote a ”helper” module (helper.py) to simplify accessing the
most used procedures. For example, getting features of sac-
cades and fixations from raw data requires parsing a file, pro-
cessing raw data, labelling samples as fixation or saccades, then
calculating features such as fixation duration or saccade ampli-
tude. This is streamlined as the getFixationList function
which takes as input a path to a CSV file along with param-
eters related to all the steps involved (e.g., resampling, gaze-
parsing). The function will deduce the variables it needs from
the CSV file’s header. Similarly, the getSaliencyMap func-
tions takes as input a fixation list (part of the output from
getFixationList) and returns a saliency maps, along the way
it handles static and dynamic saliency generation, and caching
the raw saliency data.

Below is an example of reading, processing, and generating
outputs:

Tracking can be HE (Head+Eye) or H (Head alone)

tracking = "HE"

Targeted eye

eye = "R"

Resampling rate

resample = 120

Filter settings

filterSettings = {"name": "savgol", "params": {"win": 9,

"poly": 2}}↪→

Gaze parsing settings

parsingSettings = {"name": "I-VT", "params":

{"threshold": 120}}↪→

Dimensions of output images (Height, Width)

dim = [500, 1000]

Path to CSV file containing raw gaze data

path_raw_file = "/PATH/TO/FILE.csv"

Path to image stimulus (or video)

path_stim = "/PATH/TO/IMAGE.png"

Path to write outputs in

path_out = "./"

savename = "example"

from Salient360Toolbox import helper

Get processed raw data and list of fix/sacc features

gaze_data, fix_list = helper.loadRawData(path_raw_file,

If gaze tracking, which eye to extract

eye=eye,

Gaze or Head tracking

tracking=tracking,

Resampling at a different sample rate?

resample=resample,

Filtering algo and parameters if any is selected

filter=filterSettings,

Fixation identifier algo and its parameters

parser=parsingSettings)

Generate saliency map from loaded data

sal_map = helper.getSaliencyMap(fix_list[:, [2,3,4,

0,1]], dim,↪→

Name of binary saliency file created for caching

purposes↪→

name=savename,

If a binary file exists at this location we load

the saliency data from it, unless force_generate

is True. Saliency will be saved if caching is

True

↪→

↪→

↪→

path_save=path_out,

Sigma of the 2D Gaussian drawn at the location of

fixations↪→

gauss_sigma=2,

Asks to return saliency data rather than a path to

a saliency data file if it exists↪→

force_return_data=True,

Generate data instead of reading from pre-existing

file↪→

force_generate=False,

Will save saliency to binary file to fast load at

a later time↪→

caching=True)

Get a fixation map (2d matrix with number of fixations

observed at each pixel location)↪→

fix_map = helper.getFixationMap(fix_list[:, :2], dim)

from Salient360Toolbox.generation import saliency as

sal_generate↪→

from Salient360Toolbox.generation import scanpath as

scanp_generate↪→

sal_image = sal_generate.toImage(sal_map,

cmap="coolwarm")↪→

Preprint Submitted for review / Computers & Graphics (2023) 9

Fig. 6: Screenshot of the equirectangular rendering in the GUI with a sphere (lower-left) and a viewport (lower-right) showing other projections of the data.

(fig 2.a) Save fixation map as a gray scale image

fix_map_img = sal_generate.toImage(fix_map,

cmap="binary", reverse=True)↪→

sal_generate.saveImage(fix_map_img, path_out + savename +

"_fixmap")↪→

(fig 2.b) Save saliency map as greyscale image

sal_generate.saveImage(sal_map / sal_map.max() * 255,

path_out + savename + "_salmap")↪→

Save saliency map with as colour map

sal_generate.saveImage(sal_image[:,:, [2,1,0]], path_out

+ savename + "_csalmap")↪→

(fig 2.c) Save saliency map blended with stimulus

sal_generate.saveImage(sal_map, path_out + savename +

"_bsalmap", blend=path_stim)↪→

(fig 2.d) Save stimulus with fixation points drawn over

it↪→

scanp_generate.toImage(fix_list[:, :2], dim, path_out +

savename + "_bscanpath", blend=path_stim)↪→

Save scanpath data (fixation and saccade features) to

file↪→

scanp_generate.toFile(fix_list, path_out + savename +

"_fixation.csv",↪→

Save all features

saveArr=np.arange(fix_list.shape[1]), mode="w")

The CLI gives access to the toolbox through a terminal
or invoked via another process. It exposes all functionalities
of the toolbox, as well as some of the simplicity of the GUI

(see below) by sharing batch processing functionalities (via
helper.py functions), based on passing directory as an argument
and loading all text file within.

The GUI is the most limited of the three solutions because
it does not allow batch processing of files in order to automati-
cally produce outputs for a database. Nevertheless, as described
previously visually assessing data is an important step in many
experimental and data science processes. The GUI’s state is
updated via its options and settings (Fig 5) and by drag-and-
dropping a file onto the graphical interface. When registering a
file drop event the toolbox will attempt to identify the file type.
If it is an image it will be loaded in memory and will be set as
the background image (replacing the current one if necessary).
As for a video file, OpenCV’s video capture module is used to
extract a frame. In the case of a text file (CSV or otherwise)
the toolbox will parse the first line as a header listing the file’s
column names (separated by commas) in order to identify it as
a raw data file or a fixation list file (see Sect 2.1 and Sect 2.5 for
more information on this process).

4. Conclusion

The advent of extended reality devices with embedded eye
trackers allows, on one hand, for interactive and omnidirec-
tional viewing conditions with unrestricted movements, on the
other hand for easy tracking of head and eye rotations to study
eye-in-space behaviour in immersive and controlled conditions.

10 Preprint Submitted for review / Computers & Graphics (2023)

As a response, scientific and industrial communities have en-
thusiastically been improving and using XR devices more and
more. Today we share with the community the Salient360!
toolbox: a complete set of tools dedicated to handling eye-in-
space data. We provide implementations that cover processing,
comparing, generating, and visualising gaze data. The tool-
box’s functionalities also support processing head movements
alone, and supports dynamic stimuli (e.g., video saliency out-
put). We project to continuously improve the toolbox as method
standards evolve, in particular we plan the following additions
in the short term: new choices of gaze-parsing algorithms (sac-
cade and fixation identification) dedicated to 3D and omnidirec-
tional data (e.g., [32, 33]), the addition of estimated vergence
distance data ([34]), better support for dynamic stimuli with the
identification of smooth pursuits [32]. We hope that our work
will be emancipating for groups that do not wish to develop the
skills and tools needed to analyse 3D gaze data. With the re-
lease of this toolbox we anticipate discussions about best prac-
tices and methods that will certainly lead to improvements and
consensus within the communities relying on 3D head and eye
tracking.

Acknowledgments

This work was supported by RFI Atlanstic2020, the
SFB/TRR 26 135 project C7 to Melissa L.-H. Võ and the Hes-
sisches Ministerium fuür Wissenschaft und Kunst (HMWK;
project ‘The Adaptive Mind’).

References

[1] Liversedge, SP, Findlay, JM. Saccadic eye movements and cognition.
Trends in cognitive sciences 2000;4(1):6–14.

[2] Coutrot, A, Hsiao, JH, Chan, AB. Scanpath modeling and classification
with hidden markov models. Behavior research methods 2018;50(1):362–
379.

[3] Clay, V, König, P, Koenig, S. Eye tracking in virtual reality. Journal of
eye movement research 2019;12(1).

[4] Sitzmann, V, Serrano, A, Pavel, A, Agrawala, M, Gutierrez, D,
Masia, B, et al. Saliency in vr: How do people explore virtual envi-
ronments? IEEE transactions on visualization and computer graphics
2018;24(4):1633–1642.

[5] David, EJ, Lebranchu, P, Da Silva, MP, Le Callet, P. What are the
visuo-motor tendencies of omnidirectional scene free-viewing in virtual
reality? Journal of Vision 2022;22(4):12–12.

[6] Cornelissen, FW, Peters, EM, Palmer, J. The eyelink toolbox: eye
tracking with matlab and the psychophysics toolbox. Behavior Research
Methods, Instruments, & Computers 2002;34(4):613–617.

[7] Krassanakis, V, Filippakopoulou, V, Nakos, B. Eyemmv toolbox: An
eye movement post-analysis tool based on a two-step spatial dispersion
threshold for fixation identification. Journal of Eye Movement Research
2014;7(1).

[8] Andreu-Perez, J, Solnais, C, Sriskandarajah, K. Ealab (eye activity
lab): a matlab toolbox for variable extraction, multivariate analysis and
classification of eye-movement data. Neuroinformatics 2016;14(1):51–
67.

[9] Moacdieh, NM, Sarter, NB. Eye tracking metrics: A toolbox for assess-
ing the effects of clutter on attention allocation. In: Proceedings of the
Human Factors and Ergonomics Society annual meeting; vol. 56. SAGE
Publications Sage CA: Los Angeles, CA; 2012, p. 1366–1370.

[10] Cercenelli, L, Tiberi, G, Corazza, I, Giannaccare, G, Fresina, M,
Marcelli, E. Saclab: A toolbox for saccade analysis to increase usability
of eye tracking systems in clinical ophthalmology practice. Computers in
Biology and Medicine 2017;80:45–55.

[11] Marighetto, P, Coutrot, A, Riche, N, Guyader, N, Mancas, M, Gos-
selin, B, et al. Audio-visual attention: Eye-tracking dataset and analysis
toolbox. In: 2017 IEEE International Conference on Image Processing
(ICIP). IEEE; 2017, p. 1802–1806.

[12] Larsson, L, Schwaller, A, Nyström, M, Stridh, M. Head move-
ment compensation and multi-modal event detection in eye-tracking data
for unconstrained head movements. Journal of neuroscience methods
2016;274:13–26.

[13] Lappi, O. Eye movements in the wild: Oculomotor control, gaze be-
havior & frames of reference. Neuroscience & Biobehavioral Reviews
2016;69:49–68.

[14] Le Meur, O, Baccino, T. Methods for comparing scanpaths and
saliency maps: strengths and weaknesses. Behavior research methods
2013;45(1):251–266.

[15] Bylinskii, Z, Judd, T, Oliva, A, Torralba, A, Durand, F. What do
different evaluation metrics tell us about saliency models? arXiv preprint
arXiv:160403605 2016;.

[16] Gutiérrez, J, David, E, Rai, Y, Le Callet, P. Toolbox and dataset for
the development of saliency and scanpath models for omnidirectional/360
still images. Signal Processing: Image Communication 2018;69:35–42.

[17] Gutiérrez, J, David, EJ, Coutrot, A, Perreira Da Silva, M, Le Callet, P.
Introducing un salient360! benchmark: A platform for evaluating visual
attention models for 360° contents. In: 2018 Tenth International Con-
ference on Quality of Multimedia Experience (QoMEX). IEEE; 2018, p.
1–3.

[18] David, E, Gutiérrez, J, Coutrot, A, Perreira Da Silva, M, Callet, PL. A
dataset of head and eye movements for 360° videos. In: Proceedings of
the 9th ACM Multimedia Systems Conference. ACM; 2018, p. 432–437.

[19] Virtanen, P, Gommers, R, Oliphant, TE, Haberland, M, Reddy, T,
Cournapeau, D, et al. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods 2020;17:261–272. doi:10.1038/
s41592-019-0686-2.

[20] Harris, CR, Millman, KJ, van der Walt, SJ, Gommers, R, Vir-
tanen, P, Cournapeau, D, et al. Array programming with NumPy.
Nature 2020;585(7825):357–362. URL: https://doi.org/10.1038/
s41586-020-2649-2. doi:10.1038/s41586-020-2649-2.

[21] Seabold, S, Perktold, J. statsmodels: Econometric and statistical model-
ing with python. In: 9th Python in Science Conference. 2010,.

[22] Bradski, G. The opencv library. Dr Dobb’s Journal of Software Tools
2000;.

[23] van der Walt, S, Schönberger, JL, Nunez-Iglesias, J, Boulogne, F,
Warner, JD, Yager, N, et al. scikit-image: image processing in Python.
PeerJ 2014;2:e453. URL: https://doi.org/10.7717/peerj.453.
doi:10.7717/peerj.453.

[24] Lam, SK, Pitrou, A, Seibert, S. Numba: A llvm-based python jit com-
piler. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. 2015, p. 1–6.

[25] Shoemake, K. Animating rotation with quaternion curves. In: Proceed-
ings of the 12th annual conference on Computer graphics and interactive
techniques. 1985, p. 245–254.

[26] Salvucci, DD, Goldberg, JH. Identifying fixations and saccades in eye-
tracking protocols. In: Proceedings of the 2000 symposium on Eye track-
ing research & applications. ACM; 2000, p. 71–78.

[27] Ester, M, Kriegel, HP, Sander, J, Xu, X, et al. A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Kdd;
vol. 96. 1996, p. 226–231.

[28] Tomar, S. Converting video formats with ffmpeg. Linux Journal
2006;2006(146):10.

[29] Kümmerer, M, Wallis, TS, Bethge, M. Information-theoretic
model comparison unifies saliency metrics. Proceedings of the National
Academy of Sciences 2015;112(52):16054–16059.

[30] Paszke, A, Gross, S, Chintala, S, Chanan, G, Yang, E, DeVito, Z, et al.
Automatic differentiation in pytorch 2017;.

[31] Dewhurst, R, Nyström, M, Jarodzka, H, Foulsham, T, Johansson, R,
Holmqvist, K. It depends on how you look at it: Scanpath comparison in
multiple dimensions with multimatch, a vector-based approach. Behavior
research methods 2012;44(4):1079–1100.

[32] Agtzidis, I, Startsev, M, Dorr, M. 360-degree video gaze behaviour:
A ground-truth data set and a classification algorithm for eye movements.
In: Proceedings of the 27th ACM International Conference on Multime-
dia. 2019, p. 1007–1015.

[33] Llanes-Jurado, J, Marı́n-Morales, J, Guixeres, J, Alcañiz, M. Develop-

http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453

Preprint Submitted for review / Computers & Graphics (2023) 11

ment and calibration of an eye-tracking fixation identification algorithm
for immersive virtual reality. Sensors 2020;20(17):4956.

[34] Duchowski, AT, Krejtz, K, Volonte, M, Hughes, CJ, Brescia-Zapata, M,
Orero, P. 3d gaze in virtual reality: vergence, calibration, event detection.
Procedia Computer Science 2022;207:1641–1648.

	Introduction
	What the Salient360! toolbox implements
	Processing
	Saliency generation
	Scanpath generation
	Comparing
	Visualising

	Usages
	Conclusion

