

Record, Review, Share and Analyze Behavioral Data from 6DoF-XR Experiments with PLUME

Charles JAVERLIAT*, Sophie VILLENAVE*, Pierre RAIMBAUD, Guillaume LAVOUÉ École Centrale de Lyon, CNRS, LIRIS UMR5025, ENISE

Understand user experience using data

- Self-reported data: questionnaires, semi-structured interviews
- Behavioral data: inputs, movements, interactions
- Physiological data: EEG, ECG, EDA, EOG, HR, etc.

Self-reported data has intrinsics limitations

- Question framing biasResponse subjectivity bias
 - Memory bias

Behavioral and physiological data acquisition is challenging

- Tedious to acquire
- Hard to synchronize
- Performance-intensive
- Heterogeneous format among studies
- Replicability and reproducibility issues due to partial recording.

Existing tools* fall short of requirements

- Time consuming installation
- Tightly couples the tool with the project

- Limited compatibility with head mounted displays
- Performance-intensive
- Proprietary license

^{*} VR Scientific Toolkit (VRSTK), Cognitive3D, Tobii Ocumen, Vizard, MIRIA, NVIDIA VCR, ... (Full comparative table available in the paper)

PLUME Overview

Ex-situ analysis

PLUME File Format (.plm)

Self-contained

No dependency on project files, easy to share.

Raw data

Low-level, timestamped, data (transforms, components properties, physiological signals) for maximum reproducibility and data repurposing.

Easy parsing

Platform-neutral and language-neutral format using Protobuf. Easy data wrangling thanks to PLUME Python.

Plug-and-play Unity Plugin

1min setup.

Record as much as possible by default

Positions, meshes, spatialized audio, eye-gaze, inputs, event markers, physiological signals, ...

Fast and lightweight

Using IL weaving for hooks injection in assemblies and Burst-compiled routines.

No strings attached

No changes required in the project scripts. Uninstalling is as easy as installing.

Cross-platforms (PC-VR and autonomous)

Windows, iOS, Android, PC-VR.

OpenXR compatibility for XR specific data

Eye gaze, controlers inputs, interactions, etc.

Individual or collaborative scenarios

Large compatibility with physiological sensors Compatibility layer with the LabStreamingLayer.

Standalone desktop 3D Viewer

Doesn't require the Unity project to replay .plm files.

0

Post-experiment visual inspection

Detect issues, post-experiment debrief with participants.

Q

In-situ analysis of synchronized multi-modal data

Run custom analysis modules directly on 3D data, quickly find correlations between scene state and physiological state.

3D interactive player

PLM file
Self-contained
record file

Builtin in-situ analysis modules

Quickly create trajectories, interaction highlights, position heatmaps for any object, eye gaze heatmaps, etc.

Trajectories (with markers)

Interaction highlights

Eye gaze heatmaps

Position heatmaps

Create your own modules

Use the raw data and the 3D context to build insightful spatiotemporal visualizations.

Quick export to other formats

Export your data as CSV and XDF using the Python CLI

Easy data wrangling

Quickly load the .plm file as a dataframe for direct use in traditional analytical pipelines like pandas or R.

PLM file - Self-contained record file

```
# Load a record file
record = plm.parser.parse_record_from_file("path/to/record.plm")

# Get samples in a given time range (in nanoseconds)
record.get_samples_in_time_range(0, 10_000)

# Get samples of a given type in a given time range (in nanoseconds)
record.get_samples_by_type_in_time_range(transform_pb2.TransformUpdate, 0, 10_000)

# Convert samples to a pandas dataframe
transform_updates_df = samples_to_dataframe(transform_updates)
```


Integration in wellestablished ecosystems

(pandas, R, EEGLAB, SigViewer)

PLUME is free and open-source!

https://github.com/liris-xr/PLUME

https://discord.gg/QMnKCvhBCf

Evaluating bio-signals sensors for VR

<u>Goal:</u> Measuring the impact of typical VR movements on signal quality depending on electrode placement

Recorder - Synchronization of VR tasks and physiological signal using markers (at beginning and end of tasks)

Viewer - Inspect records to understand discrepancies in the data and empirically correlate movements and noise

Python - Compute signals quality using Pearson Correlation for EDA and Template Matching for ECG

• How to ? Install **Plume** in a Unity Project

- Hands-on **Plume** to compute ex-situ analysis
- Hands-on **Plume** to produce in-situ visualizations

https://liris-xr.github.io/PLUME/ > Learn > Learn the basics

https://github.com/liris-xr/PLUME-Tutorial-Basics/releases/ > Download record1.plm, record2.plm and plume_bundle.zip

