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ABSTRACT
Eye tracking can serve as a gateway to studying the mind. For this
reason it has been adopted by a diverse range of scientific communi-
ties. With the improvement of the quality of head-mounted virtual
reality devices (HMDs) over the past 10 years, eye tracking has
been added to capture gaze in immersive environments. The use of
HMDs with eye tracking is increasing significantly and so is the
need for a toolbox enabling consensus about eye tracking methods
in 3D. We present the Salient360! toolbox: it implements functions
to identify saccades and fixations and output gaze characteristics
(e.g., fixation duration or saccade directions), to generate saliency
maps, fixation maps, and scanpath data. It also implements routines
made to compare gaze data that were adapted to 3D. We hope that
this toolbox will spark discussions about the methodology of 3D
gaze processing, facilitate running experiments, and improve the
gaze study in 3D.
https://github.com/David-Ef/ salient360Toolbox

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Human-centered computing → Visualization toolkits;
• Information systems→ Extraction, transformation and loading.
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1 INTRODUCTION
Gaze tracking is highly utilised throughout vision sciences, it is
particularly used as an overt cue for visual attention. Gaze positions
and movements are made up of an extremely rich spatio-temporal
signal [Liversedge and Findlay 2000], the importance of which
has been recognised by a diverse array of scientific and industrial
communities. Amongst many other examples, gaze data is used to
predict experimental [David et al. 2019; Le Meur et al. 2017] or clini-
cal [Beltrán et al. 2018; Zhang et al. 2016] groups. In clinical settings
it has been applied to the development of screening tests [Benfatto
et al. 2016; Crabb et al. 2014] and treatment/rehabilitation training
[Livengood and Baker 2015]. In training scenarios it provides better
feedback for learners [Rosch and Vogel-Walcutt 2013]. It shapes
image and video compression algorithms [Dias et al. 2015; Li et al.
2011; Zhang et al. 2021] and image/video quality metrics [Le Meur
and Coutrot 2016; Le Meur et al. 2010; Ninassi et al. 2007]. The
cinema industry understands its usefulness in the analysis of the
locus of attention in narrative contents [Löwe et al. 2015; Marañes
et al. 2020].

The quality of virtual reality (VR) headsets has increased tremen-
dously in the last decades. With the addition of embedded eye
trackers, scientists have begun to rely on it more and more to study
gaze and visual attention in immersive conditions closer to the
natural world. As these devices enter homes, more immersive and
360 contents (image, movies, video games) specific to this viewing
paradigm are now being created. As a result, an understanding of
how people look and behave in these environments [David et al.
2022; Sitzmann et al. 2018] is required to improve, for example, gaze
prediction algorithms, which is essential to developing compression
algorithms adapted to VR. Consequently, there is a need to have
robust and powerful tools to process gaze, eye, and head tracking
in 3D.

There exist several eye tracking toolboxes meant to handle data
obtained on standard computer screens. For example, eye tracker
vendors often provide tools themselves, for example to identify
saccades and fixations, and create saliency maps. Some of these

https://github.com/David-Ef/salient360Toolbox
https://doi.org/10.1145/3588015.3588406
https://doi.org/10.1145/3588015.3588406
https://doi.org/10.1145/3588015.3588406
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Figure 1: Schematic representation of the functionalities of the toolbox, from input to process to be processed to generated
outputs.

toolboxes are dedicated to a particular eye tracker [Cornelissen
et al. 2002]. There are non-specialised toolboxes meant to be used
in many circumstances [Andreu-Perez et al. 2016; Krassanakis et al.
2014], while others are dedicated to particular analyses [Moacdieh
and Sarter 2012], applications [Cercenelli et al. 2017] or experimen-
tal conditions [Marighetto et al. 2017].

When transitioning from on-screen to VR studies, it becomes
clear that eye tracking toolboxes are not applicable. Moving from
a screen as a 2D plane to a 3D world, one must now consider the
movement of the head as part of the gaze. Therefore, eye rotation
data are often referenced by "eye-in-head" and the combined head
and eye rotation by "eye-in-space" [Lappi 2016; Larsson et al. 2016].
In addition to this nomenclature, in this paper we choose to employ
eye and gaze, respectively. On top of this, gaze-parsing algorithms
need to be modified (e.g., the Euclidean distance used to compute
velocities is replaced by the orthodromic distance). Many measures
must be updated, which are used to process raw data, generate
features of saccades and fixations, or saliency data. Saliency and
scanpath comparison algorithms [Bylinskii et al. 2016; Le Meur and
Baccino 2013] need modifying as well. The toolbox described in
this article was created in response to this void in the community.
Its functionalities related to saccade and fixation features are useful
to experiments tracking head and eye, whereas those related to
saliency maps are constrained to omnidirectional stimuli, like 360°
pictures and videos. As more and more teams come to use gaze
tracking in VR we believe it is of utmost importance to publish
updated tools and start broader discussions about new/adapted
tools and methods.

2 WHAT THE SALIENT360! TOOLBOX
IMPLEMENTS

The first version of the toolbox was written to handle eye and
head rotation data gathered for the Salient360! visual attention
modelling challenge [David et al. 2018; Gutiérrez et al. 2018b,a].
The requirements were to:

• Combine eye (eye-in-head) with head rotation data to get
gaze (eye-in-space)

• Process head data
• Identify fixations and saccades
• Calculate features of fixations and saccades (Tab 1)
• Generate saliency maps and scanpath
• Compare saliency maps and scanpaths

In its latest version the toolbox handles all of this better than
it did in 2018. In addition, it now allows to visualise gaze data
(raw and processed). The toolbox is written in Python 3 (Python
Software Foundation, https://www.python.org/ ) with the help of
the scientific computing toolbox (SciPi [Virtanen et al. 2020], with
NumPy [Harris et al. 2020]) and statsmodels [Seabold and Perktold
2010]. The OpenCV [Bradski 2000] and scikit-image [van der Walt
et al. 2014] modules are used to manipulate saliency maps as images.
Numba [Lam et al. 2015] is used to accelerate some processing steps
(e.g., saliency map calculation), PyOpenGL and PyQt5 were needed
to build the visualising part of the toolbox. A list of requirements
and an installation scripts are provided in the repository’s README
file. Installation is made easier with the use of a Conda environment.

It should be noted that the main purpose of the toolbox is to
handle gaze data as the combination of eye and head data, but it is
useful to work with head data alone as well. Indeed, in the context
of the Salient360! challenge it was also used to generate trajectories
(akin to gaze scanpath) and saliency maps based on these head
trajectory data. So keep in mind that, although we describe most
of the toolbox as pertaining to gaze data, it can be used to process
head data alone as well.

2.1 Processing
The minimal input is, for each sample: a timestamp, an eye direction
vector, and a head rotation value (Euler angles or quaternion).When
loading a raw or processed gaze file, the toolbox will try to identify
the required variables amongst the file columns according to its
header and a set of allowed variable names.
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(a) Fixation map (b) Saliency map

(c) Saliency data blended with stimulus (d) Fixation positions over a stimulus (colour encodes for fixa-
tion index)

Figure 2: Example outputs from our toolbox. a) a fixation map as a 2D matrix with fixation counts pixel-wise. b) a saliency
map obtained by convolving a fixation map with a Gaussian kernel. c) a saliency map blended with an image to better identify
salient regions. d) colour-coded points drawn at fixation locations to get a scanpath image showing time-course development
(data from only one trial is shown here); lines between points can be added to help visualise transitions.

Raw data are processed to produce saccade and fixation features
according to a set of allowed parameters. First, according to what
eye data is available, one may choose which to use: left, right or
combined. If combined eye data is not provided it will be computed
as the average of left and right data. We recommend to resample
head and eye data to have matching sampling rates, for example,
using the Vive Pro Eye will result in head data sampled at 90Hz and
eye tracking data at 120Hz. Head rotations are stored as quaternions
(if provided as Euler angles, they will be converted), thus we use the
spherical quadrangle interpolation (SQUAD) method [Shoemake
1985]. Cubic interpolation is used for eye direction vectors. To
identify saccades and fixations [Salvucci and Goldberg 2000]
we provide three methods:

• A velocity-based method – using a velocity threshold param-
eter (in °/s).

• A hidden Markov model method – model’s parameters are
trained on the velocity signals and hidden states come to
represent samples of low (fixations) and high (saccades) ve-
locities.

• A cluster-based method – DBSCAN [Ester et al. 1996] is
fed sample positions and used to separate clusters of points
(fixations) from noise (saccades).

Filter parameters to smooth the velocity signal can be provided as
well (Gaussian or Savitzky–Golay filters).

Head data can be processed alone to produce a head trajectory.
In that case we use a sliding time-window (90ms) to calculate the
average position of the head, as if the gaze were centred in the visual
field of view (forward vector of the head tracking data projected
on a unit sphere).

2.2 Scanpath and saliency generation
Once fixation and saccades have been identified, one can produce
saliency maps as a general representation of where the gaze landed
in the scene or one can produce a time sequence of features that
we will call fixation list or scanpath.

Note that we consider gaze data to be projected on a sphere sur-
rounding the observer’s head, to represent this information visually
and to be saved on disk this is projected using the equirectangular
projection. Therefore, saliency maps are created by drawing a 2D
Gaussian at the location of all identified fixations on the equirectan-
gular map. The Gaussian kernels drawn are isotropic on the sphere,
but not on the equirectangular map due to the latitudinal distor-
tion resulting from the cylindrical projection. The default standard
deviation of the Gaussian kernel is set to two degrees.

Video saliency maps can be generated to support protocols pre-
senting dynamic stimuli, like videos. In that case, a frame index
must be provided along with the raw data, saliency will then be com-
puted frame-wise. A function is provided to output these saliency
frames as images, which can be spliced with ffmpeg [Tomar 2006]
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to produce a saliency video. Blended saliency images and videos
are produced if an image or a video is provided. The saliency data
is added over the original stimulus with an opacity of 70%.

Scanpaths (i.e., fixation list) are saved as CSV-formatted files
containing either one or all 10 calculated features (Tab 1). In addition
to these features, we provide an index of the fixation/saccade, as
well as the start and end timestamps of fixations. In the case of head
trajectory data the exact same set of features will be calculated,
considering time-window points as fixations, two such "fixations"
make the start and end point of a "saccade". A simple version of
a scanpath can be output as coloured points at the location of
fixations over a black background or the original stimulus.

2.3 Comparing
To compare saliency data we rely on the equirectangular saliency
maps generated above. The comparison methods provided are AUC
(Borji and Judd ), CC, KLD, NSS, and SIM (see [Kümmerer et al.
2015] and [Bylinskii et al. 2016] for a review of these metrics).
Implementations of AUC (Borji and Judd), CC, NSS and SIM are
originally by Chencan Qian 1. Since an equirectangular projection
shows strong latitudinal distortions we added a correction in the
form of a weight vector, in order to give less importance to points
near the poles (sine function). This correction is applied for CC,
KLD, and SIM. PyTorch [Paszke et al. 2017] implementations of
CC, KLD, NSS and SIM measures are provided in the interest of
performance and compatibility, though the toolbox will use non-
PyTorch implementations by default which are accelerated with
Numba.

Scanpaths (time series of saccade/fixation features) are com-
pared using the MultiMatch method [Dewhurst et al. 2012]. This
method does not rely on regions of interest, rather it tries to com-
pare the shape of the scanpaths. It considers and reports several
measures of scanpaths:

• Direction –Difference between saccade relative angles [David
et al. 2022].

• Duration – Difference between fixation durations.
• Length – Difference between saccade lengths.
• Position – Angular distance between fixations on sphere.
• Shape – Difference between saccade "shapes" ( ®𝑠𝑎𝑐𝑐1 − ®𝑠𝑎𝑐𝑐2).

Note that the measures are normalised between 0 and 1, allowing
to be interpreted as a percentage of dissimilarity and to be averaged
together to produce a general single-value dissimilarity score. Thus,
all measures are divided by pi, apart from the durationmetric which
is divided by the maximum duration observed in the two scanpaths
compared.

When comparing dynamic saliency maps or scanpaths, data
is compared over sequential windows of approximately 2sec. For
every time window we calculate measures, then we average the
results over the time windows.

2.4 Visualising
The graphical interface allows to visually assess the quality of the
data, to experiment with parameters related to the processing and
generating functions (Fig 3). It implements exporting functionalities

1https://github.com/herrlich10/saliency, retrieved 2018.

to output saliency maps (it does not support dynamic stimuli),
scanpath as coloured points on the original stimulus or fixation lists
with the features of your choice. The GUI offers an equirectangular
view window on which gaze data appears as points (raw gaze
sample or fixation position) over an image, a greyscale saliency
map or an image blending the stimulus with the saliency data (Fig 4).
This view also presents a spheres on which the equirectangular
data is back-projected (lower-right), along with a viewport (lower-
right) approximating what would be perceived in a VR headset.
The viewport’s boundary appears on the equirectangular map as a
deformed square with a red border.

If a CSV file is dropped over the equirectangular view, the toolbox
will check if it contains raw gaze data or if it is a fixation list. The
content will then be processed to produce saliency maps and (raw
and fixation list) scanpath data. If the Control key is pressed while
dropping a text file, its data will be added to what was currently on
screen instead of replacing it.

3 USAGES
One can use the toolbox one of three ways, with the:

• Scripting interface (Python)
• Command line interface (CLI)
• Graphical user interface (GUI)

The scripting interface is the most complete and the one we
recommend for processing entire databases. It contains a "helper"
module (helper.py) meant to simplify accessing particular procedure.
For example, getting features of saccades and fixations from raw
data requires parsing a file, processing raw data, labelling samples
as fixation or saccades, then calculating features. This is stream-
lined as the getFixationList function which takes as input a path
to a CSV file along with the parameters related to all the steps in-
volved. The function will deduce the variables it needs from the
CSV file’s header. Similarly, the getSaliencyMap functions takes
as input a fixation list (part of the output from getFixationList)
and returns a saliency maps, along the way it handles static and
dynamic saliency generation, and caching the raw saliency data.

Below is an example of reading, processing, and generating out-
puts:

# Tracking can be HE (Head+Eye) or H (Head alone)
tracking = "HE"
# Targeted eye
eye = "R"
# Resampling rate
resample = 120
# Filter settings
filterSettings = {"name": "savgol", "params": {"win": 9,

"poly": 2}}↩→

# Gaze parsing settings
parsingSettings = {"name": "I-VT", "params": {"threshold":

120}}↩→

# Dimensions of output images (Height, Width)
dim = [500, 1000]
# Path to CSV file containing raw gaze data
path_raw_file = "/path/to/file.csv"
# Path to image stimulus
path_stim = "/path/to/stim.png"
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Table 1: List of saccade and fixation features calculated by the toolbox, and available to be saved in CVS files.

Event Name Description

Fixation Duration Time difference between first and last sample making up the fixation
Position Average gaze or head position as longitudes and latitudes or as unit direction vectors
Dispersion Average distance of samples’ position making up the fixation and its centroid
Peak velocity Maximum velocity observed during the fixation
Peak acceleration Maximum acceleration observed during the fixation

Saccade Amplitude Angular distance between first and last saccade sample on the sphere
Absolute angle Angle between the saccade vector and the longitudinal axis
Relative angle Angle between two consecutive saccade vectors
Peak velocity Maximum velocity observed during the saccade
Peak acceleration Maximum acceleration observed during the saccade

Figure 3: Screenshot of the options offered by the GUI.

from Salient360Toolbox import helper

# Get processed raw data and list of fix/sacc features
gaze_data, fix_list = helper.loadRawData(path_raw_file,

# If gaze tracking, which eye to extract
eye=eye,
# Gaze or Head tracking
tracking=tracking,
# Resampling at a different sample rate?
resample=resample,
# Filtering algo and parameters if any is selected
filter=filterSettings,
# Fixation identifier algo and its parameters
parser=parsingSettings)

# Generate saliency map from loaded data
sal_map = helper.getSaliencyMap(fix_list[:, [2,3,4, 0,1]],

dim,↩→

# Name of binary saliency file created for caching

purposes↩→

name=savename,
# If a binary file exists at this location we load the

saliency data from it, unless force_generate is
True. Saliency will be saved if caching is True

↩→

↩→

path_save=PATH_OUT,
# Sigma of the 2D Gaussian drawn at the location of

fixations↩→

gauss_sigma=2,
# Asks to return saliency data rather than a path to

a saliency data file if it exists↩→

force_return_data=True,
# Generate data instead of reading from pre-existing

file↩→

force_generate=False,
# Will save saliency to binary file to fast load at a

later time↩→

caching=True)

# Get a fixation map (2d matrix with number of fixations

observed at each pixel location)↩→

fix_map = helper.getFixationMap(fix_list[:, :2], dim)

from Salient360Toolbox.generation import saliency as

sal_generate↩→

sal_image = sal_generate.toImage(sal_map, cmap="coolwarm")

# (fig 2.a) Save fixation map as a gray scale image
fix_map_img = sal_generate.toImage(fix_map, cmap="binary",

reverse=True, blend=path_stim)↩→

sal_generate.saveImage(fix_map_img, outpath+"_fixmap")

# (fig 2.b) Save saliency map as greyscale image
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Figure 4: Screenshot of the equirectangular rendering in the GUI with a sphere (lower-left) and a viewport (lower-right)
showing other projections of the data.

sal_generate.saveImage(sal_image, outpath+"_salmap")

# (fig 2.c) Save saliency map blended with stimulus
sal_generate.saveImage(sal_map, outpath+"_bsalmap",

blend=path_stim)↩→

# (fig 2.d) Save stimulus with fixation points drawn over

it↩→

scanp_generate.toImage(fix_list[:, :2], dim,

outpath+"_bscanpath", blend=path_stim)↩→

from Salient360Toolbox.generation import scanpath as

scanp_generate↩→

# Save scanpath data (fixation and saccade features) to

file↩→

scanp_generate.toFile(fix_list, outpath+"_fixation.csv",
# Save all features
saveArr=np.arange(fix_list.shape[1]), mode="w")

The CLI is handy to access the toolbox through the shell or
invoked via another process. It exposes all functionalities of the
toolbox.

The GUI is the most limited of the three solutions because it
does not allow batch processing of files in order to automatically
produce outputs for a database. Data is added by drag-and-dropping
files onto thewindow: an imagewill be used to set the background; a
video will be used to set the background (a frame will be extracted);
a CSV file will replace or update gaze data on-screen.

4 CONCLUSION
The advent of virtual reality devices with embedded eye trackers
allows for easy tracking of head and eye rotations to study eye-in-
space behaviour in immersive and controlled conditions. Although,
the study of eye movement on 2D screens has produced strong
methods, they are not necessarily directly transferable to 3D gaze
data. The Salient360! Toolbox provides functionalities for extracting,
comparing and visualising gaze data obtained in 3D contexts (such
as with a VR headset), where head and eye rotations were measured.
Note that its functionalities related to saliency map calculation and
comparison are applicable particularly to omnidirectional stimuli
(360 images or videos). Our toolbox constitutes efforts meant to
democratise the use of head and eye tracking devices by making
it easier to use the resulting data. With the release of this tool-
box we anticipate discussions about best practices and methods
that will certainly lead to improvements and consensus within the
communities relying on head and eye tracking.
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